微生物英语作文
⑴ 微生物 特点英文
Evolution
Single-celled microorganisms were the first forms of life to develop on earth, approximately 3–4 billion years ago. Further evolution was slow, and for about 3 billion years in the Precambrian eon, all organisms were microscopic. So, for most of the history of life on Earth the only form of life were microorganisms. Bacteria, algae and fungi have been identified in amber that is 220 million years old, which shows that the morphology of microorganisms have changed little since the triassic period.
Most microorganisms can reproce rapidly and microbes such as bacteria can also freely exchange genes by conjugation, transformation and transction between widely-divergent species. This horizontal gene transfer, coupled with a high mutation rate and many other means of genetic variation, allows microorganisms to swiftly evolve (via natural selection) to survive in new environments and respond to environmental stresses. This rapid evolution has led to the recent development of 'super-bugs' — pathogenic bacteria that are resistant to modern antibiotics.
Importance
Microorganisms are vital to humans and the environment, as they participate in the Earth's element cycles such as the carbon cycle and nitrogen cycle, as well as fulfilling other vital roles in virtually all ecosystems, such as recycling other organisms' dead remains and waste procts through decomposition. Microbes also have an important place in most higher-order multicellular organisms as symbionts. Many blame the failure of Biosphere 2 on an improper balance of microbes.
Use in food
Microorganisms are used in brewing, baking and other food-making processes.
The lactobacillus / lactobacilli and yeasts in sourdough bread are especially useful. To make bread, one uses a small amount (20-25%) of "starter" dough which has the yeast culture, and mixes it with flour and water. Some of this resulting dough is then saved to be used as the starter for subsequent batches. The culture can be kept at room temperature and continue yielding bread for years as long as it remains supplied with new flour and water. This technique was often used when "on the trail" in the American Old West.
Microorganisms are also used to control the fermentation process in the proction of cultured dairy procts such as yogurt and cheese. The cultures also provide flavour and aroma, and to inhibit undesirable organisms.
Use in water treatment
Microbes are used in the biological treatment of sewage and instrial waste effluents.
Use in energy
Microbes are used in fermentation to proce ethanol.
Use in science
Microbes are also essential tools in biotechnology, biochemistry, genetics, and molecular biology. Microbes can be harnessed for uses such as creating steroids and treating skin diseases. Scientists are also considering using microbes for living fuel cells, and as a solution for pollution.
Use in warfare
In the Middle Ages, dead corpses were thrown over walls ring sieges, this meant that any bacteria carrying the disease that killed the person/creature would multiply in the vicinity of the opposing side.
⑵ 急需几篇关于环境微生物的英语论文!谢谢大家~!
用英文关键词在数据库里搜,我做毕业论文时的办法
⑶ 我写了一篇英文文章,是关于微生物和生物技术方面的,想投一个影响因子在1左右的SCI期刊,请推荐,谢谢
如果比较有创新,可以投 biotechnology letters,既然是letter,则会把你的很多内容精简掉。
另外回,韩国有个杂志答,journal of microbiology and biotechnology.
good luck!
⑷ 求一篇微生物的英文论文和对应的中文翻译,急
你在CNKI里面去搜一下这篇文章,原文我没有留,译文留了
里面的图表自己补
Gas chromatographic-mass spectrometric characterization of some fatty acids from white 和 interior spruce(云杉种子脂肪酸的GC-MS分析)
译文出处:D.-J. Carrier et al./J. Chromatogr. A715 (1995)317-324
外文译文正文:
摘要:本文主要是研究测定云杉种子中脂肪酸的成分。一是通过气相色谱分析种子油中获得的脂肪酸甲酯化衍生物。云杉脂肪酸甲酯化衍生物的洗脱时间不受有效标样类别的影响。二是将提取物二乙氨化,并通过气相色谱-质谱进行分析。由所得图谱分析确定样品中含有cis-ll-18:
l,cis-5,cis-9-18:2和 和 cis-5,cis-9,cis-12-18:3等脂肪酸。
1 引言
内陆云杉(Picea glauca engelmannii Complex)是白云杉(Picea glauca) 和恩格尔曼(Picea engelrnannii) 在它们重叠地带的自然杂交品种。它是一种重要的经济作物,在英国的哥伦比亚每年有8千万株的种植量。本文研究的目的是通过胚离体培养的克隆繁殖系统来改进优化云杉的生产。人工种子的生产是研究目的之一,涉及到人工胚乳(幼苗发芽储存物质)的形成。本文的研究旨在为发展人工胚乳,更好的了解云杉幼苗发育的营养需要提供有用的基础数据。云杉种子中含有约30%的脂类物质[1]。和其它裸子植物一样,高脂质含量表明脂类代谢是幼苗获得自养能力前的重要营养供给 [2]。本文测定内陆云杉种子的脂类及其组成。据调查,目前还没有关于云杉种子脂肪酸研究的报道。在前期研究中,用气相色谱法(GC)分析内陆云杉种子脂肪酸的甲酯化产物,但是其中丰度第二的脂肪酸甲酯化产物很难由现有的标准图谱进行确定。这些洗脱峰存在于cis-9,cis-12-18:2和cis-9,cis-12,cis-15-18:3的脂肪酸甲酯衍生物之间。初始GC-MS测定显示分子离子峰与18:3甲酯衍生物相匹配。前人有关白云杉脂肪酸含量的研究中,丰度第二的成分是5,9-18:2。为明确和完善云杉种子脂肪酸成分研究,本文对内陆白云杉种子大量脂肪酸进行测定。通过GC-MS测定不饱和脂肪族的许多方法是可行的。与丙酮、硼酸反应后,接着与临位二元醇作用是确定不饱和双键的常用方法,硅烷基化及甲酯化也是惯常方法[3]。质谱数据结果能提供丰富的资料,但是锇的四氧化物反应过程中存在着潜在危险。研究发现,氢化作用后进行环氧化也能
确定不饱和双键的位置[3],虽然这是一个不错的方法,但两步衍化十分耗时。另一种确定双键位置的方法是在羧基端加入一稳定基团,例如掺入形成酰胺基[4],双键数可能会在形成质谱图谱时减少。吡咯烷一般作为质谱洗脱脂肪酸识别酰胺的物质[3]。然而,对于未知脂肪酸成分是否含有羟基、环氧基及其他保守基团,二乙胺化是有效的方法[4]。该方法优点是较其他方法容易获得衍生物及进行质谱分析,现已成功应用于对欧洲云杉脂肪酸双键位置的确定[5]。本文报道内陆白云杉种子的总脂类中脂肪酸的含量及种类。脂类提取然后一部分甲酯化,再进行GC分析;另一部分则二乙胺化,并进一步进行GC-MS测定。
2 实验部分
2 1 化学药品
化学药品均达到试剂级别。氯化氢甲醇购买于Supelco Canada Oakville, (Ont., Canada),二乙胺及冰醋酸分别购于Aldrich(Milwaukee, WI, USA)和Fisher Scientific(Nepean, Ont., Canada)。白云杉和及青冈云杉种子分别由Prairie Farm Rehabilitation Administration(Indian Head, Sask., Canada)和British Columbia Research (Vancouver,BC,Canada)提供。十七碳脂肪酸及其他脂肪酸甲酯化物标品购于Nu-Chek-Prep (Elysian, MN,USA)。
2.2 方法
初始甲酯化研究
根据成熟的方案[6-8]提取内陆云杉种子并进行甲醇反应。十七碳脂肪酸作为内参标品。如前所述对脂肪酸甲酯进行分析[8]。
GC-MS
GC-MS分析均用Fison 8000型GC-MS仪(Fisons Instruments,Manchester, UK),具60m×0.32mm ID.DB-23 熔融石英毛细管柱(J&W Scientific, Folsom, CA, USA)和与Fison Tri2000质谱四极杆相接的接口。所有样品以逐一注入的模式注入。最初柱温70℃,然后以20℃/min升至180℃,接着以每秒4℃/min升至240℃。GC接口及物料保持在250℃。每1.1s以70eV的电子能量从50-510的质量范围重复检测。
总脂类提取和二乙氨衍生化作用
100mg种子提取中加入1.5ml异丙醇,用TP型匀浆器(Janke & Kunkel, Germany)以最大速度均质3min;密封并沸水浴5min;冷却后加入0.75ml CH2Cl2,室温放置30min,间断漩涡振荡;再加入1ml水及2mlCH2Cl2 。涡旋振荡并830g离心。保留有机相,用2mlCH2Cl2再次抽提水相。合并获得的有机相,蒸发溶剂获得总脂。根据Ref.[5]设计的方案获得二乙氨衍生物。总脂转移至1ml穿刺反应瓶中,反应瓶中含0.8ml二乙氨和0.1ml冰醋酸,然后在氮气保护下净化,再密封置于穿刺反应仪(Rockford, IL, USA)中,105℃下反应75min。而后反应混合物转移至带有瓶塞的玻璃试管中。在氮气流中蒸发掉二乙氨,然后加入1ml水及3mlCH2Cl2,涡旋震荡并830g离心。最后蒸发至得到干物质并回收二乙氨衍生物的有机相。
3 结果及讨论
3.1甲酯化
每毫克鲜重的种子直接甲酯化[6]能产生150µg的总脂肪酸。但种方法并不能总是能定量的测定从植物组织中提取出来的脂肪酸。它能够像最初一样很好地测定植物叶片中的脂肪酸,对其他植物组织就未必能起到很好的作用,例如内陆云杉种子。按Hara等人提出的总脂肪酸提取方案,然后再用甲酯化气相色谱分析法,可以测出每毫克鲜重种子300µg范围内的总脂肪酸。上文均用Holbrooketal提出的提取方案和转甲基化方法。
内陆云杉种子总脂肪酸的气相色谱-质谱分析结果如图1,通过与标样的保留时间和图谱比较可以得知1、2、3、6的峰值分别代表16:0, 18:0, 9-18:1和9,12-18:2脂肪酸甲酯。根据现有的色谱条件trans-9-18:l和trans-9,trans-12-18:2脂肪酸甲酯的洗脱时间比相应的顺式异构体cis-9-18:1和cis-9,cis-12-18:2脂肪酸甲酯要早0.5min。结合植物油脂多为顺式异构体这一事实,可以推知在这次测定中所得的同样应该是顺式异构体。所以在图1.中的峰值3和6可以确定为cis-9-18:1和cis-9,cis-12-18:2脂肪酸甲酯。在图1.(标注为7)的质谱数据图谱中的丰度第二的组分显示的离子峰为292,这和18:3脂肪酸甲酯相匹配,但是它的保留时间与现有的任一标样都不符。同样地,组分5的离子峰为294,显示为一种不明双键位置的18:2二烯酸甲酯。白杉种子总脂肪酸提取物的GC-MS分析结果如图2.所示。从中可以观察到两个物种的脂肪酸甲酯的结构是相似的。离子峰D和E分别是296和294,表明它们分别为18:1和18:2脂肪酸甲酯。图1.中的峰5、7和图2.中的峰D和E对应的物质的结构阐述将在下文介绍。
3.2 二乙氨衍生物
二乙氨衍生物提供一分子电荷稳定基团给分析物,使其在断片发生之前重新电荷分布产生峰值[3]。以cis-9,cis-12,cis-15-18:3(a-亚麻酸)作为参考物质对这种方法进行了首次评定,依照Ref.[5]介绍的规律解释质谱结果显示:每隔14u出现一个饱和键,而片段在Cn和Cn+1之间被12u所分隔则表示在Cn+1和Cn+2存在一个不饱和双键。可以用这一结论解释二乙氨衍生物质谱分析中的cb-9,cis-12,cis-15-18:3的双键位置。质谱分析结果基本符合Ref.[5]介绍的规律。电子轰击后的二乙氨衍生物的质谱图谱显示于图3的A和B,对应的峰分别是第6和7。
图3A显示离子峰为335u,对应的二乙氨衍生物为18:2。片段m/z 198-210和 m/z 238-250的差别表示在C9-C10和C12- C13各存在一个双键,就如Ref.[5]叙述的,经测定该化合物为cis-9,cis-12-
18:2。丰度为第二的脂肪酸的二乙氨衍生物被显示于图3B,其离子峰显示为333u,测定对应的物质为18:3的二乙氨衍生物,在m/z 142-154, 196-208 和236-248间存在12u的差异说明在5、9、12三处各有一个双键。而在云杉属中,9,12-18:2表示cis构象,故可以确定该化合物为cis-5,
cis-9,cis-12-18:3。电子轰击后,二乙氨衍生物的质谱图谱(图1中对应峰5)不能有效说明双键的所在位置,但白云杉脂肪酸二乙氨衍生物的图谱(图2对应峰E)能有效地说明,如图4A所示:离子峰为335确定为18:2二乙氨衍生物,双键位置分别在碳5、9位,测定为cis-5,cis-9-18:
2。图4B中显示的二乙氨衍生物的图谱,在图2中对应着峰D。离子峰337u对应18:1二乙氨衍生物,尽管不是很清晰,但该图谱仍显示在226-238质量单位间存在12u,说明双键位置在碳11、12间,化合物确定为cis-11-18:1。
通过比较两种云杉种子的脂肪酸甲酯的保留时间可以推测图1.中的峰值5和图2中的峰值是相同的(即两者都是cis-5,cis-9-18:2)同样的,图2.中的峰值D和图1.中的峰值4也有相似的保留时间。因此初步鉴定它们为cis-11-18:1。
图2.中的峰值A、B、C、D、E、F和G被确定为16:0,18:0,cis-9-18:l,cis-i1-18:1,cis-5,
cis-9-18:2,cis-9,cis-12-18:2 和cis-5,cis-9,cis-12-18:3。这些脂肪酸在白杉和内陆云杉种子中的分布如表1.所示。白杉和内陆云杉种子的油脂含量分别是鲜重的49±5%和41±1%。
相对于其它族的脂肪链来说cis-5,cis-9-18:2和cis-5,cis-9,cis-12-18:3的三乙氨衍生物的图谱在m/z182处均显示出强烈的离子效应。这种强的离子效应可能是由在形成烯丙基片段时两个亚甲基将双键分隔而引起。这一假设是从图3B.和图4A.中的脂肪酸衍生物图谱分析中提出来的。在图3A.和图4B.中的图谱并没有显示出在m/z182强烈的离子效应。脂肪酸cis-5,cis
-9,cis-12-18:3 在对P.abies[5,9,11] 和 P.engelmannii, mariana, obovata, orientalis和sitchensis [10]的研究中都有检测到。我们在P. glauca 和 P. glauca engelmannii Complex的研究中也检测到了这些物质。其他文章[1,12]报道P. glauca中丰度第二的脂肪酸为cis-5,cis-9-18:2,我们实验室所得的P. glauca种子提取物的确含有这些脂肪酸,但却是次要组分,结果见表1.。
参考文献
[1] S.M. Attree, M.K. Pomeroy 和 L.C. Fowke, Planta, 187 (1992) 395.
[2] T.M. Ching, in T.T. Kozlowski (Editor), Seed Biology, Vol. II, Academic Press, New York, 1972, p. 103.
[3] L. Hogge 和 J. Millar, in J.C. Giddings et al. (Editors), Advances in Chromatography, Vol. 27, Marcel Dekker, New York, 1987, p. 299.
[4] B.A. 和ersson, W.H. Heimermann 和 R.T. Holman, Lipids, 9 (1974) 443.
[5] R. Nilsson 和 C. Liljenberg, Phytochem. Anal., 2(1991) 253.
[6] J. Browse, P.J. McCourt 和 C.R. Somerville, Anal. Biochem., 152 (1986) 141.
[7] A. Hara 和 N.S. Radin, Anal. Biochem., 90 (1978) 420.
[8] L.A. Holbrook, J.R. Magus 和 D.C. Taylor, PlantSci., 84 (1992) 99.
[9] R. Ekman, Phytochemistry, 19 (1980) 147.
[10] G.R. Jamieson 和 E.H Reid, Phytochemistry, 11(1972) 269.
[11] M. Olsson, R. Nilsson, P. Norberg, S. von Arnold 和 C. Liljenberg, Plant Physiol. Biochem., 32 (1994) 225.
[12] S.M. Attree, M.K. Pomeroy 和 L.C. Fowke, Plant Cell Rep., 13 (1994) 601.
⑸ 求近两年的微生物学术英文论文!!!!急!
四篇,够吗?不够说,要多少有多少~希望能采纳
⑹ 谁能帮我找一篇与微生物有关的英文文章``````
http://en.wikipedia.org/wiki/Microorganism
http://zh.wikipedia.org/wiki/%E5%BE%AE%E7%94%9F%E7%89%A9
A microorganism (also can be spelled as micro organism) or microbe is an organism that is microscopic (too small to be seen by the naked human eye). The study of microorganisms is called microbiology, a subject that began with Anton van Leeuwenhoek's discovery of microorganisms in 1675, using a microscope of his own design.
Microorganisms are incredibly diverse and include bacteria, fungi, archaea, and protists, as well as some microscopic plants and animals such as plankton, and popularly-known animals such as the planarian and the amoeba. They do not include viruses and prions, which are generally classified as non-living. Most microorganisms are single-celled, or unicellular, but some multicellular organisms are microscopic, while some unicellular protists, and a bacteria called Thiomargarita namibiensis are visible to the naked eye.
Microorganisms live in all parts of the biosphere where there is liquid water, including hot springs, on the ocean floor, high in the atmosphere and deep inside rocks within the Earth's crust. Microorganisms are critical to nutrient recycling in ecosystems as they act as decomposers. As some microorganisms can fix nitrogen, they are a vital part of the nitrogen cycle, and recent studies indicate that airborne microbes may play a role in precipitation and weather.
Microbes are also exploited by people in biotechnology, both in traditional food and beverage preparation, as well as modern technologies based on genetic engineering. However, pathogenic microbes are harmful, since they invade and grow within other organisms, causing diseases that kill millions of people, other animals, and plants.
History
Evolution
Single-celled microorganisms were the first forms of life to develop on earth, approximately 3– billion years ago.Further evolution was slow,and for about 3 billion years in the Precambrian eon, all organisms were microscopic. So, for most of the history of life on Earth the only form of life were microorganisms.Bacteria, algae and fungi have been identified in amber that is 220 million years old, which shows that the morphology of microorganisms has changed little since the triassic period.
Most microorganisms can reproce rapidly and microbes such as bacteria can also freely exchange genes by conjugation, transformation and transction between widely-divergent species.[10] This horizontal gene transfer, coupled with a high mutation rate and many other means of genetic variation, allows microorganisms to swiftly evolve (via natural selection) to survive in new environments and respond to environmental stresses. This rapid evolution is important in medicine, as it has led to the recent development of 'super-bugs' — pathogenic bacteria that are resistant to modern antibiotics.
Pre-Microbiology
The possibility that microorganisms might exist was discussed for many centuries before their actual discovery in the 17th century. The first ideas about microorganisms were those of the Roman scholar Marcus Terentius Varro in a book titled On Agriculture in which he warns against locating a homestead near swamps:
“ …and because there are bred certain minute creatures which cannot be seen by the eyes, which float in the air and enter the body through the mouth and nose and there cause serious diseases.”
This passage seems to indicate that the ancients were aware of the possibility that diseases could be spread by yet unseen organisms.
In The Canon of Medicine (1020), Abū Alī ibn Sīnā (Avicenna) stated that bodily secretion is contaminated by foul foreign earthly bodies before being infected.He also hypothesized that tuberculosis and other diseases might be contagious, i.e. that they were infectious diseases, and used quarantine to limit their spread.
When the Black Death bubonic plague reached al-Andalus in the 14th century, Ibn Khatima wrote that infectious diseases were caused by "contagious entities" that enter the human body. Later, in 1546, Girolamo Fracastoro proposed that epidemic diseases were caused by transferable seedlike entities that could transmit infection by direct or indirect contact, or even without contact over long distances.
All these early claims about the existence of microorganisms were speculative in nature and not based on any data or science. Microorganisms were neither proven, observed, nor correctly and accurately described until the 17th century. The reason for this was that all these early inquiries lacked the most fundamental tool in order for microbiology and bacteriology to exist as a science, and that was the microscope.
Discovery
Anton van Leeuwenhoek was the first person to observe microorganisms, using a microscope of his own design, thereby making him the first microbiologist. In doing so Leeuwenhoek would make one of the most important contributions to biology and open up the fields of microbiology and bacteriology. Prior to Leeuwenhoek's discovery of microorganisms in 1675, it had been a mystery as to why grapes could be turned into wine, milk into cheese, or why food would spoil. Leeuwenhoek did not make the connection between these processes and microorganisms, but using a microscope, he did establish that there were forms of life that were not visible to the naked eye.Leeuwenhoek's discovery, along with subsequent observations by Lazzaro Spallanzani and Louis Pasteur, ended the long-held belief that life spontaneously appeared from non-living substances ring the process of spoilage.
Lazzarro Spallanzani found that microorganisms could only settle in a broth if the broth was exposed to the air. He also found that boiling the broth would sterilise it and kill the microorganisms. Louis Pasteur expanded upon Spallanzani's findings by exposing boiled broths to the air, in vessels that contained a filter to prevent all particles from passing through to the growth medium, and also in vessels with no filter at all, with air being admitted via a curved tube that would not allow st particles to come in contact with the broth. By boiling the broth beforehand, Pasteur ensured that no microorganisms survived within the broths at the beginning of his experiment. Nothing grew in the broths in the course of Pasteur's experiment. This meant that the living organisms that grew in such broths came from outside, as spores on st, rather than spontaneously generated within the broth. Thus, Pasteur dealt the death blow to the theory of spontaneous generation and supported germ theory.
In 1876, Robert Koch established that microbes can cause disease. He did this by finding that the blood of cattle who were infected with anthrax always had large numbers of Bacillus anthracis. Koch also found that he could transmit anthrax from one animal to another by taking a small sample of blood from the infected animal and injecting it into a healthy one, causing the healthy animal to become sick. He also found that he could grow the bacteria in a nutrient broth, inject it into a healthy animal, and cause illness. Based upon these experiments, he devised criteria for establishing a causal link between a microbe and a disease in what are now known as Koch's postulates.Though these postulates cannot be applied in all cases, they do retain historical importance in the development of scientific thought and can still be used today.
Classification and structure
Microorganisms can be found almost anywhere in the taxonomic organization of life on the planet. Bacteria and archaea are almost always microscopic, while a number of eukaryotes are also microscopic, including most protists, some fungi, as well as some animals and plants. Viruses are generally regarded as not living and therefore are not microbes, although the field of microbiology also encompasses the study of viruses.
[edit] Prokaryotes
Prokaryotes are organisms that lack a cell nucleus and the other organelles found in eukaryotes. Prokaryotes are almost always unicellular, although some species such as myxobacteria can aggregate into complex structures as part of their life cycle. These organisms are divided into two groups, the archaea and the bacteria.
Bacteria
Bacteria are the most diverse and abundant group of organisms on Earth. Bacteria inhabit practically all environments where some liquid water is available and the temperature is below +140 °C. They are found in sea water, soil, air, animals' gastrointestinal tracts, hot springs and even deep beneath the Earth's crust in rocks.[20] Practically all surfaces which have not been specially sterilized are covered in bacteria. The number of bacteria in the world is estimated to be around five million trillion trillion, or 5 × 1030.
Bacteria are practically all invisible to the naked eye, with a few extremely rare exceptions, such as Thiomargarita namibiensis.They are unicellular organisms and lack membrane-bound organelles. Their genome is usually a single loop of DNA, although they can also harbor small pieces of DNA called plasmids. These plasmids can be transferred between cells through bacterial conjugation. Bacteria are surrounded by a cell wall, which provides strength and rigidity to their cells. They reproce by binary fission or sometimes by budding, but do not undergo sexual reproction. Some species form extraordinarily resilient spores, but for bacteria this is a mechanism for survival, not reproction. Under optimal conditions bacteria can grow extremely rapidly and can double as quickly as every 10 minutes......
微生物是指一切肉眼看不到或看不清楚,因而需要借助显微镜观察的微小生物。微生物包括原核微生物(如细菌)、真核微生物(如真菌、藻类和原虫)和无细胞生物(如病毒)三类。
主要特性
微生物最大的特点,不但在於体积微小,而且在结构上亦相当简单。由於微生物体积极之微小,故相对面积较大,物质吸收快,转化快。微生物在生长与繁殖上亦是很迅速的,而且适应性强。从寒冷的冰川到极酷热的温泉,从极高的山顶到极深的海底,微生物都能够生存。
由於微生物适应性强,又容易在较短时间内积聚非常多的个体(例如10^10个/毫升的数量级),因此容易筛选并分离到突变株。容易得到微生物突变株的性质,给人类利用与开发微生物带来广阔契机,但也是导致抗药性的内在原因。
微生物的代谢
微生物的代谢指微生物(细胞)内发生的全部化学反应。 微生物的代谢异常旺盛,这是由於微生物的表面积与体积比很大(约是同等重量的成年人的30万倍),使它们能够迅速与外界环境进行物质交换。
代谢产物 微生物在代谢过程中,会产生多种代谢产物。根据代谢产物与微生物生长繁殖的关系,可以分为初级代谢产物和次级代谢产物两类。 初级代谢产物是指微生物通过代谢活动产生的、自身生长和繁殖所必须的物质,如氨基酸、核苷酸、多糖、脂质、维生素等。在不同种类的微生物细胞中,初级代谢产物的种类基本相同。 次级代谢产物是指微生物生长到一定阶段才产生的化学结构十分复杂,对该微生物无明显生理功能,或并非是微生物生长和繁殖所必须的物质,如抗生素、毒素、激素、色素等。不同种类的微生物所产生的次级代谢产物不相同,它们可能积累在细胞内,也可能排到外环境中。
代谢的调节 微生物在长期的进化过程中,形成了一整套完善的代谢调节系统,以保证证代谢活动经济而高效地进行。微生物的代谢调节主要有两种方式:酶合成的调节和酶活性的调节。 另外人工控制微生物代谢的措施包括改变微生物遗传特徵,控制生产过程中的各种条件等。
主要分类
微生物主要分为以下几类:(参见生物分类总表)
原核微生物
细菌(Bacteria)
古菌(Archaea)
真核微生物
真菌(Fungi)
原生生物(protozoan)
藻类(algae)
无细胞生物
病毒(virus)
类病毒(virusoid)
拟病毒(viroid)
朊毒体(亦称朊病毒、蛋白质质感染性颗粒)(prion)
微生物在自然界的存在
微生物在自然界中广泛存在,数目巨大。下表为一些生态环境中微生物细胞数目的估计:
密度 全球总数
海水 108~109 L-1 约1029
海洋沉积物 109 g-1 约3×1029
动物消化道 1011 g-1 约1025
地表或海底下深处 102~108 约1030
原核生物共构成全球生物量的25~50%。
微生物的作用
微生物与人类的生产、生活和生存息息相关。有很多食品(如酱油、醋、味精、酒、酸奶、奶酪、蘑菇)、工业品(如皮革、纺织、石化)、药品(如抗生素、疫苗、维生素、生态农药)是依赖于微生物制造的;微生物在矿产探测与开采、废物处理(如水净化、沼气发酵)等各种领域中也发挥重要作用。微生物是自然界唯一认知的固氮者(如大豆根瘤菌)与动植物残体降解者(如纤维素的降解),同时位于常见生物链的首末两端,从而完成碳、氮、硫、磷等生物质在大循环中的衔接。若没有微生物,众多生物就失去必需的营养来源、植物的纤维质残体就无法分解而无限堆积,就没有自然界当前的繁荣与秩序或人类的产生与维续。
此外,微生物对地球上气候的变化也起着重要作用。许多微生物直接参与了温室气体的排放或者吸收,而也有很多微生物可以成为未来的生物燃料[1]。
微生物与人类健康
微生物与人类健康密切相关。多数微生物对人体是无害的。实际上,人体的外表面(如皮肤)和内表面(如肠道)生活着很多正常、有益的菌群。它们占据这些表面并产生天然的抗生素,抑制有害菌的着落与生长;它们也协助吸收或亲自制造一些人体必需的营养物质,如维生素和氨基酸。这些菌群的失调(如抗生素滥用)可以导致感染发生或营养缺失。然而另一方面,人类与动植物的疾病也有很多是由微生物引起,这些微生物叫做病原微生物(pathogenic microorganism)或病原(pathogen)。重要的人类致病微生物列于下表中。
主要的人类致病微生物 疾病名称 致病原 全球感染(携带者)人数 每年新发病例数 每年死亡人数
结核 结核分枝杆菌 ~20亿人(全球三分之一人口) 881万例 (2003 [1]) 175万人 (2003 [2])
艾滋病 人类免疫缺陷病毒 4200万人 550万例 310万人
痢疾 志贺氏菌、痢疾杆菌、大肠埃希氏杆菌等 27亿例 190万人
疟疾 疟原虫 3-5亿例 100万人
乙型肝炎 乙型肝炎病毒 1000-3000万例 100万人
麻疹 麻疹病毒 3000万例 90万人
登革热 登革病毒 2000万例 2万4千人
流感 流感病毒 几乎全部人口 300-500万例 25万人
黄热病 黄热病毒 20万例 3万人
其他经常听说的致病微生物还有:流行已经完全得到控制或消灭的天花病毒(引起天花)和脊髓灰质炎病毒(导致小儿麻痹症);引起炭疽病的炭疽杆菌;以及近年来显现的萨斯冠状病毒(引起严重急性呼吸道综合症,又名萨斯、也俗称非典型肺炎)和可能将在人类流行的禽流感。
对现代生物学研究与医学技术的贡献
现代生物学的若干基础性的重大发现与理论,是在研究微生物的过程中或以微生物为实验材料与工具取得的。这些理论包括:
证明DNA(脱氧核糖核酸)是遗传信息的载体(三大经典实验:肺炎球菌的转化实验、噬菌体实验、植物病毒的重组实验)
DNA的半保留复制方式(双螺旋的每一条子链分别、都是复制模板)
遗传密码子的解读(64个密码子各对应20种氨基酸及终止信号的哪一种)
基因的转录调节(operon, promoter, operator, repressor, activator的概念与调节方式)
信使RNA的翻译调节(terminator)
等等……(请添加)
现在,很多常用、通用的生物学研究技术依赖于微生物,比如:
分子克隆
重组蛋白在细菌或酵母中的表达
很多医学技术也依赖于微生物。比如:
以病毒为载体的基因治疗
⑺ 求一篇关于微生物驯化或相关的英文文献外加中文翻译,3000字以上
额。。。楼上的各位实在都太不靠谱了。。看来拿分的只能是我了。。。。跪谢楼上各位大大的不精彩答案啊
⑻ 求有关微生物的英文综述论文(review),译成中文5000字左右,急!!!
这种打工作量的 东西谁会帮你做 除非你出钱
⑼ 跪求一片SCI上发表的微生物方向英文版完整论文~~急用
1、Microbiological Implications of Periurban Agriculture and Water Reuse in Mexico City
Plos One 影响因子:4.351
网页地址:http://www.plosone.org/article/info:doi/10.1371/journal.pone.0002305
pdf格式:http://www.plosone.org/article/fetchObjectAttachment.action;jsessionid=.ambra01?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0002305&representation=PDF
更多的呢可以到OA图书馆进行查询。 或者到哪里提问和问我。
⑽ 求微生物方面英文论文
推荐你去淘宝的:翰林书店,店主应该能下载到这类论文。我去下过,很及时的