微生物英語作文
⑴ 微生物 特點英文
Evolution
Single-celled microorganisms were the first forms of life to develop on earth, approximately 3–4 billion years ago. Further evolution was slow, and for about 3 billion years in the Precambrian eon, all organisms were microscopic. So, for most of the history of life on Earth the only form of life were microorganisms. Bacteria, algae and fungi have been identified in amber that is 220 million years old, which shows that the morphology of microorganisms have changed little since the triassic period.
Most microorganisms can reproce rapidly and microbes such as bacteria can also freely exchange genes by conjugation, transformation and transction between widely-divergent species. This horizontal gene transfer, coupled with a high mutation rate and many other means of genetic variation, allows microorganisms to swiftly evolve (via natural selection) to survive in new environments and respond to environmental stresses. This rapid evolution has led to the recent development of 'super-bugs' — pathogenic bacteria that are resistant to modern antibiotics.
Importance
Microorganisms are vital to humans and the environment, as they participate in the Earth's element cycles such as the carbon cycle and nitrogen cycle, as well as fulfilling other vital roles in virtually all ecosystems, such as recycling other organisms' dead remains and waste procts through decomposition. Microbes also have an important place in most higher-order multicellular organisms as symbionts. Many blame the failure of Biosphere 2 on an improper balance of microbes.
Use in food
Microorganisms are used in brewing, baking and other food-making processes.
The lactobacillus / lactobacilli and yeasts in sourdough bread are especially useful. To make bread, one uses a small amount (20-25%) of "starter" dough which has the yeast culture, and mixes it with flour and water. Some of this resulting dough is then saved to be used as the starter for subsequent batches. The culture can be kept at room temperature and continue yielding bread for years as long as it remains supplied with new flour and water. This technique was often used when "on the trail" in the American Old West.
Microorganisms are also used to control the fermentation process in the proction of cultured dairy procts such as yogurt and cheese. The cultures also provide flavour and aroma, and to inhibit undesirable organisms.
Use in water treatment
Microbes are used in the biological treatment of sewage and instrial waste effluents.
Use in energy
Microbes are used in fermentation to proce ethanol.
Use in science
Microbes are also essential tools in biotechnology, biochemistry, genetics, and molecular biology. Microbes can be harnessed for uses such as creating steroids and treating skin diseases. Scientists are also considering using microbes for living fuel cells, and as a solution for pollution.
Use in warfare
In the Middle Ages, dead corpses were thrown over walls ring sieges, this meant that any bacteria carrying the disease that killed the person/creature would multiply in the vicinity of the opposing side.
⑵ 急需幾篇關於環境微生物的英語論文!謝謝大家~!
用英文關鍵詞在資料庫里搜,我做畢業論文時的辦法
⑶ 我寫了一篇英文文章,是關於微生物和生物技術方面的,想投一個影響因子在1左右的SCI期刊,請推薦,謝謝
如果比較有創新,可以投 biotechnology letters,既然是letter,則會把你的很多內容精簡掉。
另外回,韓國有個雜志答,journal of microbiology and biotechnology.
good luck!
⑷ 求一篇微生物的英文論文和對應的中文翻譯,急
你在CNKI裡面去搜一下這篇文章,原文我沒有留,譯文留了
裡面的圖表自己補
Gas chromatographic-mass spectrometric characterization of some fatty acids from white 和 interior spruce(雲杉種子脂肪酸的GC-MS分析)
譯文出處:D.-J. Carrier et al./J. Chromatogr. A715 (1995)317-324
外文譯文正文:
摘要:本文主要是研究測定雲杉種子中脂肪酸的成分。一是通過氣相色譜分析種子油中獲得的脂肪酸甲酯化衍生物。雲杉脂肪酸甲酯化衍生物的洗脫時間不受有效標樣類別的影響。二是將提取物二乙氨化,並通過氣相色譜-質譜進行分析。由所得圖譜分析確定樣品中含有cis-ll-18:
l,cis-5,cis-9-18:2和 和 cis-5,cis-9,cis-12-18:3等脂肪酸。
1 引言
內陸雲杉(Picea glauca engelmannii Complex)是白雲杉(Picea glauca) 和恩格爾曼(Picea engelrnannii) 在它們重疊地帶的自然雜交品種。它是一種重要的經濟作物,在英國的哥倫比亞每年有8千萬株的種植量。本文研究的目的是通過胚離體培養的克隆繁殖系統來改進優化雲杉的生產。人工種子的生產是研究目的之一,涉及到人工胚乳(幼苗發芽儲存物質)的形成。本文的研究旨在為發展人工胚乳,更好的了解雲杉幼苗發育的營養需要提供有用的基礎數據。雲杉種子中含有約30%的脂類物質[1]。和其它裸子植物一樣,高脂質含量表明脂類代謝是幼苗獲得自養能力前的重要營養供給 [2]。本文測定內陸雲杉種子的脂類及其組成。據調查,目前還沒有關於雲杉種子脂肪酸研究的報道。在前期研究中,用氣相色譜法(GC)分析內陸雲杉種子脂肪酸的甲酯化產物,但是其中豐度第二的脂肪酸甲酯化產物很難由現有的標准圖譜進行確定。這些洗脫峰存在於cis-9,cis-12-18:2和cis-9,cis-12,cis-15-18:3的脂肪酸甲酯衍生物之間。初始GC-MS測定顯示分子離子峰與18:3甲酯衍生物相匹配。前人有關白雲杉脂肪酸含量的研究中,豐度第二的成分是5,9-18:2。為明確和完善雲杉種子脂肪酸成分研究,本文對內陸白雲杉種子大量脂肪酸進行測定。通過GC-MS測定不飽和脂肪族的許多方法是可行的。與丙酮、硼酸反應後,接著與臨位二元醇作用是確定不飽和雙鍵的常用方法,硅烷基化及甲酯化也是慣常方法[3]。質譜數據結果能提供豐富的資料,但是鋨的四氧化物反應過程中存在著潛在危險。研究發現,氫化作用後進行環氧化也能
確定不飽和雙鍵的位置[3],雖然這是一個不錯的方法,但兩步衍化十分耗時。另一種確定雙鍵位置的方法是在羧基端加入一穩定基團,例如摻入形成醯胺基[4],雙鍵數可能會在形成質譜圖譜時減少。吡咯烷一般作為質譜洗脫脂肪酸識別醯胺的物質[3]。然而,對於未知脂肪酸成分是否含有羥基、環氧基及其他保守基團,二乙胺化是有效的方法[4]。該方法優點是較其他方法容易獲得衍生物及進行質譜分析,現已成功應用於對歐洲雲杉脂肪酸雙鍵位置的確定[5]。本文報道內陸白雲杉種子的總脂類中脂肪酸的含量及種類。脂類提取然後一部分甲酯化,再進行GC分析;另一部分則二乙胺化,並進一步進行GC-MS測定。
2 實驗部分
2 1 化學葯品
化學葯品均達到試劑級別。氯化氫甲醇購買於Supelco Canada Oakville, (Ont., Canada),二乙胺及冰醋酸分別購於Aldrich(Milwaukee, WI, USA)和Fisher Scientific(Nepean, Ont., Canada)。白雲杉和及青岡雲杉種子分別由Prairie Farm Rehabilitation Administration(Indian Head, Sask., Canada)和British Columbia Research (Vancouver,BC,Canada)提供。十七碳脂肪酸及其他脂肪酸甲酯化物標品購於Nu-Chek-Prep (Elysian, MN,USA)。
2.2 方法
初始甲酯化研究
根據成熟的方案[6-8]提取內陸雲杉種子並進行甲醇反應。十七碳脂肪酸作為內參標品。如前所述對脂肪酸甲酯進行分析[8]。
GC-MS
GC-MS分析均用Fison 8000型GC-MS儀(Fisons Instruments,Manchester, UK),具60m×0.32mm ID.DB-23 熔融石英毛細管柱(J&W Scientific, Folsom, CA, USA)和與Fison Tri2000質譜四極桿相接的介面。所有樣品以逐一注入的模式注入。最初柱溫70℃,然後以20℃/min升至180℃,接著以每秒4℃/min升至240℃。GC介面及物料保持在250℃。每1.1s以70eV的電子能量從50-510的質量范圍重復檢測。
總脂類提取和二乙氨衍生化作用
100mg種子提取中加入1.5ml異丙醇,用TP型勻漿器(Janke & Kunkel, Germany)以最大速度均質3min;密封並沸水浴5min;冷卻後加入0.75ml CH2Cl2,室溫放置30min,間斷漩渦振盪;再加入1ml水及2mlCH2Cl2 。渦旋振盪並830g離心。保留有機相,用2mlCH2Cl2再次抽提水相。合並獲得的有機相,蒸發溶劑獲得總脂。根據Ref.[5]設計的方案獲得二乙氨衍生物。總脂轉移至1ml穿刺反應瓶中,反應瓶中含0.8ml二乙氨和0.1ml冰醋酸,然後在氮氣保護下凈化,再密封置於穿刺反應儀(Rockford, IL, USA)中,105℃下反應75min。而後反應混合物轉移至帶有瓶塞的玻璃試管中。在氮氣流中蒸發掉二乙氨,然後加入1ml水及3mlCH2Cl2,渦旋震盪並830g離心。最後蒸發至得到干物質並回收二乙氨衍生物的有機相。
3 結果及討論
3.1甲酯化
每毫克鮮重的種子直接甲酯化[6]能產生150µg的總脂肪酸。但種方法並不能總是能定量的測定從植物組織中提取出來的脂肪酸。它能夠像最初一樣很好地測定植物葉片中的脂肪酸,對其他植物組織就未必能起到很好的作用,例如內陸雲杉種子。按Hara等人提出的總脂肪酸提取方案,然後再用甲酯化氣相色譜分析法,可以測出每毫克鮮重種子300µg范圍內的總脂肪酸。上文均用Holbrooketal提出的提取方案和轉甲基化方法。
內陸雲杉種子總脂肪酸的氣相色譜-質譜分析結果如圖1,通過與標樣的保留時間和圖譜比較可以得知1、2、3、6的峰值分別代表16:0, 18:0, 9-18:1和9,12-18:2脂肪酸甲酯。根據現有的色譜條件trans-9-18:l和trans-9,trans-12-18:2脂肪酸甲酯的洗脫時間比相應的順式異構體cis-9-18:1和cis-9,cis-12-18:2脂肪酸甲酯要早0.5min。結合植物油脂多為順式異構體這一事實,可以推知在這次測定中所得的同樣應該是順式異構體。所以在圖1.中的峰值3和6可以確定為cis-9-18:1和cis-9,cis-12-18:2脂肪酸甲酯。在圖1.(標注為7)的質譜數據圖譜中的豐度第二的組分顯示的離子峰為292,這和18:3脂肪酸甲酯相匹配,但是它的保留時間與現有的任一標樣都不符。同樣地,組分5的離子峰為294,顯示為一種不明雙鍵位置的18:2二烯酸甲酯。白杉種子總脂肪酸提取物的GC-MS分析結果如圖2.所示。從中可以觀察到兩個物種的脂肪酸甲酯的結構是相似的。離子峰D和E分別是296和294,表明它們分別為18:1和18:2脂肪酸甲酯。圖1.中的峰5、7和圖2.中的峰D和E對應的物質的結構闡述將在下文介紹。
3.2 二乙氨衍生物
二乙氨衍生物提供一分子電荷穩定基團給分析物,使其在斷片發生之前重新電荷分布產生峰值[3]。以cis-9,cis-12,cis-15-18:3(a-亞麻酸)作為參考物質對這種方法進行了首次評定,依照Ref.[5]介紹的規律解釋質譜結果顯示:每隔14u出現一個飽和鍵,而片段在Cn和Cn+1之間被12u所分隔則表示在Cn+1和Cn+2存在一個不飽和雙鍵。可以用這一結論解釋二乙氨衍生物質譜分析中的cb-9,cis-12,cis-15-18:3的雙鍵位置。質譜分析結果基本符合Ref.[5]介紹的規律。電子轟擊後的二乙氨衍生物的質譜圖譜顯示於圖3的A和B,對應的峰分別是第6和7。
圖3A顯示離子峰為335u,對應的二乙氨衍生物為18:2。片段m/z 198-210和 m/z 238-250的差別表示在C9-C10和C12- C13各存在一個雙鍵,就如Ref.[5]敘述的,經測定該化合物為cis-9,cis-12-
18:2。豐度為第二的脂肪酸的二乙氨衍生物被顯示於圖3B,其離子峰顯示為333u,測定對應的物質為18:3的二乙氨衍生物,在m/z 142-154, 196-208 和236-248間存在12u的差異說明在5、9、12三處各有一個雙鍵。而在雲杉屬中,9,12-18:2表示cis構象,故可以確定該化合物為cis-5,
cis-9,cis-12-18:3。電子轟擊後,二乙氨衍生物的質譜圖譜(圖1中對應峰5)不能有效說明雙鍵的所在位置,但白雲杉脂肪酸二乙氨衍生物的圖譜(圖2對應峰E)能有效地說明,如圖4A所示:離子峰為335確定為18:2二乙氨衍生物,雙鍵位置分別在碳5、9位,測定為cis-5,cis-9-18:
2。圖4B中顯示的二乙氨衍生物的圖譜,在圖2中對應著峰D。離子峰337u對應18:1二乙氨衍生物,盡管不是很清晰,但該圖譜仍顯示在226-238質量單位間存在12u,說明雙鍵位置在碳11、12間,化合物確定為cis-11-18:1。
通過比較兩種雲杉種子的脂肪酸甲酯的保留時間可以推測圖1.中的峰值5和圖2中的峰值是相同的(即兩者都是cis-5,cis-9-18:2)同樣的,圖2.中的峰值D和圖1.中的峰值4也有相似的保留時間。因此初步鑒定它們為cis-11-18:1。
圖2.中的峰值A、B、C、D、E、F和G被確定為16:0,18:0,cis-9-18:l,cis-i1-18:1,cis-5,
cis-9-18:2,cis-9,cis-12-18:2 和cis-5,cis-9,cis-12-18:3。這些脂肪酸在白杉和內陸雲杉種子中的分布如表1.所示。白杉和內陸雲杉種子的油脂含量分別是鮮重的49±5%和41±1%。
相對於其它族的脂肪鏈來說cis-5,cis-9-18:2和cis-5,cis-9,cis-12-18:3的三乙氨衍生物的圖譜在m/z182處均顯示出強烈的離子效應。這種強的離子效應可能是由在形成烯丙基片段時兩個亞甲基將雙鍵分隔而引起。這一假設是從圖3B.和圖4A.中的脂肪酸衍生物圖譜分析中提出來的。在圖3A.和圖4B.中的圖譜並沒有顯示出在m/z182強烈的離子效應。脂肪酸cis-5,cis
-9,cis-12-18:3 在對P.abies[5,9,11] 和 P.engelmannii, mariana, obovata, orientalis和sitchensis [10]的研究中都有檢測到。我們在P. glauca 和 P. glauca engelmannii Complex的研究中也檢測到了這些物質。其他文章[1,12]報道P. glauca中豐度第二的脂肪酸為cis-5,cis-9-18:2,我們實驗室所得的P. glauca種子提取物的確含有這些脂肪酸,但卻是次要組分,結果見表1.。
參考文獻
[1] S.M. Attree, M.K. Pomeroy 和 L.C. Fowke, Planta, 187 (1992) 395.
[2] T.M. Ching, in T.T. Kozlowski (Editor), Seed Biology, Vol. II, Academic Press, New York, 1972, p. 103.
[3] L. Hogge 和 J. Millar, in J.C. Giddings et al. (Editors), Advances in Chromatography, Vol. 27, Marcel Dekker, New York, 1987, p. 299.
[4] B.A. 和ersson, W.H. Heimermann 和 R.T. Holman, Lipids, 9 (1974) 443.
[5] R. Nilsson 和 C. Liljenberg, Phytochem. Anal., 2(1991) 253.
[6] J. Browse, P.J. McCourt 和 C.R. Somerville, Anal. Biochem., 152 (1986) 141.
[7] A. Hara 和 N.S. Radin, Anal. Biochem., 90 (1978) 420.
[8] L.A. Holbrook, J.R. Magus 和 D.C. Taylor, PlantSci., 84 (1992) 99.
[9] R. Ekman, Phytochemistry, 19 (1980) 147.
[10] G.R. Jamieson 和 E.H Reid, Phytochemistry, 11(1972) 269.
[11] M. Olsson, R. Nilsson, P. Norberg, S. von Arnold 和 C. Liljenberg, Plant Physiol. Biochem., 32 (1994) 225.
[12] S.M. Attree, M.K. Pomeroy 和 L.C. Fowke, Plant Cell Rep., 13 (1994) 601.
⑸ 求近兩年的微生物學術英文論文!!!!急!
四篇,夠嗎?不夠說,要多少有多少~希望能採納
⑹ 誰能幫我找一篇與微生物有關的英文文章``````
http://en.wikipedia.org/wiki/Microorganism
http://zh.wikipedia.org/wiki/%E5%BE%AE%E7%94%9F%E7%89%A9
A microorganism (also can be spelled as micro organism) or microbe is an organism that is microscopic (too small to be seen by the naked human eye). The study of microorganisms is called microbiology, a subject that began with Anton van Leeuwenhoek's discovery of microorganisms in 1675, using a microscope of his own design.
Microorganisms are incredibly diverse and include bacteria, fungi, archaea, and protists, as well as some microscopic plants and animals such as plankton, and popularly-known animals such as the planarian and the amoeba. They do not include viruses and prions, which are generally classified as non-living. Most microorganisms are single-celled, or unicellular, but some multicellular organisms are microscopic, while some unicellular protists, and a bacteria called Thiomargarita namibiensis are visible to the naked eye.
Microorganisms live in all parts of the biosphere where there is liquid water, including hot springs, on the ocean floor, high in the atmosphere and deep inside rocks within the Earth's crust. Microorganisms are critical to nutrient recycling in ecosystems as they act as decomposers. As some microorganisms can fix nitrogen, they are a vital part of the nitrogen cycle, and recent studies indicate that airborne microbes may play a role in precipitation and weather.
Microbes are also exploited by people in biotechnology, both in traditional food and beverage preparation, as well as modern technologies based on genetic engineering. However, pathogenic microbes are harmful, since they invade and grow within other organisms, causing diseases that kill millions of people, other animals, and plants.
History
Evolution
Single-celled microorganisms were the first forms of life to develop on earth, approximately 3– billion years ago.Further evolution was slow,and for about 3 billion years in the Precambrian eon, all organisms were microscopic. So, for most of the history of life on Earth the only form of life were microorganisms.Bacteria, algae and fungi have been identified in amber that is 220 million years old, which shows that the morphology of microorganisms has changed little since the triassic period.
Most microorganisms can reproce rapidly and microbes such as bacteria can also freely exchange genes by conjugation, transformation and transction between widely-divergent species.[10] This horizontal gene transfer, coupled with a high mutation rate and many other means of genetic variation, allows microorganisms to swiftly evolve (via natural selection) to survive in new environments and respond to environmental stresses. This rapid evolution is important in medicine, as it has led to the recent development of 'super-bugs' — pathogenic bacteria that are resistant to modern antibiotics.
Pre-Microbiology
The possibility that microorganisms might exist was discussed for many centuries before their actual discovery in the 17th century. The first ideas about microorganisms were those of the Roman scholar Marcus Terentius Varro in a book titled On Agriculture in which he warns against locating a homestead near swamps:
「 …and because there are bred certain minute creatures which cannot be seen by the eyes, which float in the air and enter the body through the mouth and nose and there cause serious diseases.」
This passage seems to indicate that the ancients were aware of the possibility that diseases could be spread by yet unseen organisms.
In The Canon of Medicine (1020), Abū Alī ibn Sīnā (Avicenna) stated that bodily secretion is contaminated by foul foreign earthly bodies before being infected.He also hypothesized that tuberculosis and other diseases might be contagious, i.e. that they were infectious diseases, and used quarantine to limit their spread.
When the Black Death bubonic plague reached al-Andalus in the 14th century, Ibn Khatima wrote that infectious diseases were caused by "contagious entities" that enter the human body. Later, in 1546, Girolamo Fracastoro proposed that epidemic diseases were caused by transferable seedlike entities that could transmit infection by direct or indirect contact, or even without contact over long distances.
All these early claims about the existence of microorganisms were speculative in nature and not based on any data or science. Microorganisms were neither proven, observed, nor correctly and accurately described until the 17th century. The reason for this was that all these early inquiries lacked the most fundamental tool in order for microbiology and bacteriology to exist as a science, and that was the microscope.
Discovery
Anton van Leeuwenhoek was the first person to observe microorganisms, using a microscope of his own design, thereby making him the first microbiologist. In doing so Leeuwenhoek would make one of the most important contributions to biology and open up the fields of microbiology and bacteriology. Prior to Leeuwenhoek's discovery of microorganisms in 1675, it had been a mystery as to why grapes could be turned into wine, milk into cheese, or why food would spoil. Leeuwenhoek did not make the connection between these processes and microorganisms, but using a microscope, he did establish that there were forms of life that were not visible to the naked eye.Leeuwenhoek's discovery, along with subsequent observations by Lazzaro Spallanzani and Louis Pasteur, ended the long-held belief that life spontaneously appeared from non-living substances ring the process of spoilage.
Lazzarro Spallanzani found that microorganisms could only settle in a broth if the broth was exposed to the air. He also found that boiling the broth would sterilise it and kill the microorganisms. Louis Pasteur expanded upon Spallanzani's findings by exposing boiled broths to the air, in vessels that contained a filter to prevent all particles from passing through to the growth medium, and also in vessels with no filter at all, with air being admitted via a curved tube that would not allow st particles to come in contact with the broth. By boiling the broth beforehand, Pasteur ensured that no microorganisms survived within the broths at the beginning of his experiment. Nothing grew in the broths in the course of Pasteur's experiment. This meant that the living organisms that grew in such broths came from outside, as spores on st, rather than spontaneously generated within the broth. Thus, Pasteur dealt the death blow to the theory of spontaneous generation and supported germ theory.
In 1876, Robert Koch established that microbes can cause disease. He did this by finding that the blood of cattle who were infected with anthrax always had large numbers of Bacillus anthracis. Koch also found that he could transmit anthrax from one animal to another by taking a small sample of blood from the infected animal and injecting it into a healthy one, causing the healthy animal to become sick. He also found that he could grow the bacteria in a nutrient broth, inject it into a healthy animal, and cause illness. Based upon these experiments, he devised criteria for establishing a causal link between a microbe and a disease in what are now known as Koch's postulates.Though these postulates cannot be applied in all cases, they do retain historical importance in the development of scientific thought and can still be used today.
Classification and structure
Microorganisms can be found almost anywhere in the taxonomic organization of life on the planet. Bacteria and archaea are almost always microscopic, while a number of eukaryotes are also microscopic, including most protists, some fungi, as well as some animals and plants. Viruses are generally regarded as not living and therefore are not microbes, although the field of microbiology also encompasses the study of viruses.
[edit] Prokaryotes
Prokaryotes are organisms that lack a cell nucleus and the other organelles found in eukaryotes. Prokaryotes are almost always unicellular, although some species such as myxobacteria can aggregate into complex structures as part of their life cycle. These organisms are divided into two groups, the archaea and the bacteria.
Bacteria
Bacteria are the most diverse and abundant group of organisms on Earth. Bacteria inhabit practically all environments where some liquid water is available and the temperature is below +140 °C. They are found in sea water, soil, air, animals' gastrointestinal tracts, hot springs and even deep beneath the Earth's crust in rocks.[20] Practically all surfaces which have not been specially sterilized are covered in bacteria. The number of bacteria in the world is estimated to be around five million trillion trillion, or 5 × 1030.
Bacteria are practically all invisible to the naked eye, with a few extremely rare exceptions, such as Thiomargarita namibiensis.They are unicellular organisms and lack membrane-bound organelles. Their genome is usually a single loop of DNA, although they can also harbor small pieces of DNA called plasmids. These plasmids can be transferred between cells through bacterial conjugation. Bacteria are surrounded by a cell wall, which provides strength and rigidity to their cells. They reproce by binary fission or sometimes by budding, but do not undergo sexual reproction. Some species form extraordinarily resilient spores, but for bacteria this is a mechanism for survival, not reproction. Under optimal conditions bacteria can grow extremely rapidly and can double as quickly as every 10 minutes......
微生物是指一切肉眼看不到或看不清楚,因而需要藉助顯微鏡觀察的微小生物。微生物包括原核微生物(如細菌)、真核微生物(如真菌、藻類和原蟲)和無細胞生物(如病毒)三類。
主要特性
微生物最大的特點,不但在於體積微小,而且在結構上亦相當簡單。由於微生物體積極之微小,故相對面積較大,物質吸收快,轉化快。微生物在生長與繁殖上亦是很迅速的,而且適應性強。從寒冷的冰川到極酷熱的溫泉,從極高的山頂到極深的海底,微生物都能夠生存。
由於微生物適應性強,又容易在較短時間內積聚非常多的個體(例如10^10個/毫升的數量級),因此容易篩選並分離到突變株。容易得到微生物突變株的性質,給人類利用與開發微生物帶來廣闊契機,但也是導致抗葯性的內在原因。
微生物的代謝
微生物的代謝指微生物(細胞)內發生的全部化學反應。 微生物的代謝異常旺盛,這是由於微生物的表面積與體積比很大(約是同等重量的成年人的30萬倍),使它們能夠迅速與外界環境進行物質交換。
代謝產物 微生物在代謝過程中,會產生多種代謝產物。根據代謝產物與微生物生長繁殖的關系,可以分為初級代謝產物和次級代謝產物兩類。 初級代謝產物是指微生物通過代謝活動產生的、自身生長和繁殖所必須的物質,如氨基酸、核苷酸、多糖、脂質、維生素等。在不同種類的微生物細胞中,初級代謝產物的種類基本相同。 次級代謝產物是指微生物生長到一定階段才產生的化學結構十分復雜,對該微生物無明顯生理功能,或並非是微生物生長和繁殖所必須的物質,如抗生素、毒素、激素、色素等。不同種類的微生物所產生的次級代謝產物不相同,它們可能積累在細胞內,也可能排到外環境中。
代謝的調節 微生物在長期的進化過程中,形成了一整套完善的代謝調節系統,以保證證代謝活動經濟而高效地進行。微生物的代謝調節主要有兩種方式:酶合成的調節和酶活性的調節。 另外人工控制微生物代謝的措施包括改變微生物遺傳特徵,控制生產過程中的各種條件等。
主要分類
微生物主要分為以下幾類:(參見生物分類總表)
原核微生物
細菌(Bacteria)
古菌(Archaea)
真核微生物
真菌(Fungi)
原生生物(protozoan)
藻類(algae)
無細胞生物
病毒(virus)
類病毒(virusoid)
擬病毒(viroid)
朊毒體(亦稱朊病毒、蛋白質質感染性顆粒)(prion)
微生物在自然界的存在
微生物在自然界中廣泛存在,數目巨大。下表為一些生態環境中微生物細胞數目的估計:
密度 全球總數
海水 108~109 L-1 約1029
海洋沉積物 109 g-1 約3×1029
動物消化道 1011 g-1 約1025
地表或海底下深處 102~108 約1030
原核生物共構成全球生物量的25~50%。
微生物的作用
微生物與人類的生產、生活和生存息息相關。有很多食品(如醬油、醋、味精、酒、酸奶、乳酪、蘑菇)、工業品(如皮革、紡織、石化)、葯品(如抗生素、疫苗、維生素、生態農葯)是依賴於微生物製造的;微生物在礦產探測與開采、廢物處理(如水凈化、沼氣發酵)等各種領域中也發揮重要作用。微生物是自然界唯一認知的固氮者(如大豆根瘤菌)與動植物殘體降解者(如纖維素的降解),同時位於常見生物鏈的首末兩端,從而完成碳、氮、硫、磷等生物質在大循環中的銜接。若沒有微生物,眾多生物就失去必需的營養來源、植物的纖維質殘體就無法分解而無限堆積,就沒有自然界當前的繁榮與秩序或人類的產生與維續。
此外,微生物對地球上氣候的變化也起著重要作用。許多微生物直接參與了溫室氣體的排放或者吸收,而也有很多微生物可以成為未來的生物燃料[1]。
微生物與人類健康
微生物與人類健康密切相關。多數微生物對人體是無害的。實際上,人體的外表面(如皮膚)和內表面(如腸道)生活著很多正常、有益的菌群。它們占據這些表面並產生天然的抗生素,抑制有害菌的著落與生長;它們也協助吸收或親自製造一些人體必需的營養物質,如維生素和氨基酸。這些菌群的失調(如抗生素濫用)可以導致感染發生或營養缺失。然而另一方面,人類與動植物的疾病也有很多是由微生物引起,這些微生物叫做病原微生物(pathogenic microorganism)或病原(pathogen)。重要的人類致病微生物列於下表中。
主要的人類致病微生物 疾病名稱 致病原 全球感染(攜帶者)人數 每年新發病例數 每年死亡人數
結核 結核分枝桿菌 ~20億人(全球三分之一人口) 881萬例 (2003 [1]) 175萬人 (2003 [2])
艾滋病 人類免疫缺陷病毒 4200萬人 550萬例 310萬人
痢疾 志賀氏菌、痢疾桿菌、大腸埃希氏桿菌等 27億例 190萬人
瘧疾 瘧原蟲 3-5億例 100萬人
乙型肝炎 乙型肝炎病毒 1000-3000萬例 100萬人
麻疹 麻疹病毒 3000萬例 90萬人
登革熱 登革病毒 2000萬例 2萬4千人
流感 流感病毒 幾乎全部人口 300-500萬例 25萬人
黃熱病 黃熱病毒 20萬例 3萬人
其他經常聽說的致病微生物還有:流行已經完全得到控制或消滅的天花病毒(引起天花)和脊髓灰質炎病毒(導致小兒麻痹症);引起炭疽病的炭疽桿菌;以及近年來顯現的薩斯冠狀病毒(引起嚴重急性呼吸道綜合症,又名薩斯、也俗稱非典型肺炎)和可能將在人類流行的禽流感。
對現代生物學研究與醫學技術的貢獻
現代生物學的若干基礎性的重大發現與理論,是在研究微生物的過程中或以微生物為實驗材料與工具取得的。這些理論包括:
證明DNA(脫氧核糖核酸)是遺傳信息的載體(三大經典實驗:肺炎球菌的轉化實驗、噬菌體實驗、植物病毒的重組實驗)
DNA的半保留復制方式(雙螺旋的每一條子鏈分別、都是復制模板)
遺傳密碼子的解讀(64個密碼子各對應20種氨基酸及終止信號的哪一種)
基因的轉錄調節(operon, promoter, operator, repressor, activator的概念與調節方式)
信使RNA的翻譯調節(terminator)
等等……(請添加)
現在,很多常用、通用的生物學研究技術依賴於微生物,比如:
分子克隆
重組蛋白在細菌或酵母中的表達
很多醫學技術也依賴於微生物。比如:
以病毒為載體的基因治療
⑺ 求一篇關於微生物馴化或相關的英文文獻外加中文翻譯,3000字以上
額。。。樓上的各位實在都太不靠譜了。。看來拿分的只能是我了。。。。跪謝樓上各位大大的不精彩答案啊
⑻ 求有關微生物的英文綜述論文(review),譯成中文5000字左右,急!!!
這種打工作量的 東西誰會幫你做 除非你出錢
⑼ 跪求一片SCI上發表的微生物方向英文版完整論文~~急用
1、Microbiological Implications of Periurban Agriculture and Water Reuse in Mexico City
Plos One 影響因子:4.351
網頁地址:http://www.plosone.org/article/info:doi/10.1371/journal.pone.0002305
pdf格式:http://www.plosone.org/article/fetchObjectAttachment.action;jsessionid=.ambra01?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0002305&representation=PDF
更多的呢可以到OA圖書館進行查詢。 或者到哪裡提問和問我。
⑽ 求微生物方面英文論文
推薦你去淘寶的:翰林書店,店主應該能下載到這類論文。我去下過,很及時的